1. Oil of wintergreen is a liquid used in medicine to relieve muscle pain.

Compound **H** is a component in oil of wintergreen and can be synthesised from compound **G**, as shown below. The boiling point and density of compound **H** are stated.

A student prepares a sample of compound **H** by the method below.

- Step 1 Reflux 8.97 g of compound **G** for 30 minutes with an excess of methanol in the presence of a small amount of sulfuric acid as a catalyst.
- **Step 2** Add an excess of aqueous sodium carbonate, Na₂CO₃(aq). Two layers are obtained.
- **Step 3** Purify the impure compound **H** that forms from the resulting mixture.

The student follows this method and obtains 5.32 g of pure compound H.

Why does the student use reflux in Step 1?

2(a). The repeat unit of a polyester is shown below.

Draw the structures of monomers required to form this polyester.

(b). The compound below contains an ester and an amide group.

Draw the structures of the organic products formed by the complete **alkaline** hydrolysis of this compound using NaOH(aq).

[4]

3(a). α-Amino acids have the general formula RCH(NH₂)COOH.

The R group in an α-amino acid contains C and H only.

This R group has a molar mass of 91 g mol⁻¹.

A polymer is formed from 500 molecules of this α -amino acid.

Determine the molar mass of this polymer.

Give your answer to the nearest whole number.

molar mass of polymer = g mol⁻¹ [3]

(b). The amino acid below can form addition and condensation polymers.

Draw 2 repeat units of these polymers. Display the sections linking the monomers together.						
		addition polymer (2 repeat units)				
		condensation polymer (2 repeat units)				
			[3]			
4. 1, and	6-Diaminohexa one other produ	ane, $H_2N(CH_2)_6NH_2$, reacts with hexanedioyl dichloride, $C/OC(CH_2)_4COC$ uct.	C∕ to form a polyamide			
Wha	it is the other pr	roduct formed in this reaction?				
A B C D	HC/ H ₂ O CO NH ₃					
You	r answer		[1]			

5. Aspirin tablets are used for pain relief.

The structure of aspirin is shown below.

Aspirin

Aspirin reacts with hot NaOH(aq), under reflux.

i. Draw a labelled diagram of suitable apparatus for reflux.

[2]

ii. In this reaction, 1 mol of aspirin reacts with 3 mol of hot NaOH(aq).

Complete the equation for the reaction of aspirin with an excess of hot NaOH(aq).

Show structures for organic compounds.

6. This question is about aromatic compounds containing the –COOH and –OH functional groups.

PAS, shown below, is an antibiotic used to treat several diseases including tuberculosis (TB).

i. A student predicts that PAS could polymerise to form a polymer containing **both** ester and amide linkages.

Draw a section of this polymer.

The section should contain **one** amide and **one** ester linkage, which should be displayed.

ii. For the treatment of TB, the maximum daily dosage of PAS that should be prescribed is 300 mg per kg of body mass.

A child weighs 20.0 kg.

Calculate the number of PAS molecules in the maximum daily dosage of PAS for this child.

number of PAS molecules =

[3]

7. This question is about α -amino acids.

Three α -amino acids can react together to form compound **E**, shown below.

i. How many optical isomers are possible for compound E?

[1]

ii. A student hydrolyses compound **E** with dilute hydrochloric acid, HCl (aq).

Draw the structures of the organic products formed by this hydrolysis.

8. This question is about reactions of acrolein, $H_2C=CHCHO$.

Complete the flowchart by filling in each box.

9(a). This question is about polymers derived from carboxylic acid monomers.

i. Poly(pent-3-enoic acid) is an addition polymer.

Draw the structure of pent-3-enoic acid and **two** repeat units of this polymer.

Pent-3-enoic acid	
Two repeat units of poly(pent-3-enoic acid)	

[2]

ii. Butanedicarboxylic acid and 1,4-dihydroxy-2-methylbenzene react to form a condensation polymer.

Draw **one** repeat unit of this condensation polymer.

iii. Three repeat units of a condensation polymer are shown below.

Draw the structure of the monomer required to form this polymer.

(b). This question is about compounds that contain the carboxylic acid functional group.

A polymer is formed from 400 molecules of 2-aminopropanoic acid.

i. Draw **one** repeat unit of this polymer.

[1]

M_r =	ii.	What is the relative molecular mass, $M_{\rm r}$, of the polymer?		
10. Butyl propanoate is hydrolysed by aqueous sodium hydroxide. Which compound is one of the products of this hydrolysis? A C_3H_7ONa B $C_3H_5O_2Na$ C C_4H_9ONa D $C_4H_7O_2Na$				
10. Butyl propanoate is hydrolysed by aqueous sodium hydroxide. Which compound is one of the products of this hydrolysis? A C_3H_7ONa B $C_3H_5O_2Na$ C C_4H_9ONa D $C_4H_7O_2Na$				
10. Butyl propanoate is hydrolysed by aqueous sodium hydroxide. Which compound is one of the products of this hydrolysis? A C_3H_7ONa B $C_3H_5O_2Na$ C C_4H_9ONa D $C_4H_7O_2Na$				
10. Butyl propanoate is hydrolysed by aqueous sodium hydroxide. Which compound is one of the products of this hydrolysis? A C_3H_7ONa B $C_3H_5O_2Na$ C C_4H_9ONa D $C_4H_7O_2Na$				
10. Butyl propanoate is hydrolysed by aqueous sodium hydroxide. Which compound is one of the products of this hydrolysis? A C_3H_7ONa B $C_3H_5O_2Na$ C C_4H_9ONa D $C_4H_7O_2Na$			M - 10	
Which compound is one of the products of this hydrolysis? A C ₃ H ₇ ONa B C ₃ H ₅ O ₂ Na C C ₄ H ₉ ONa C C ₄ H ₇ O ₂ Na			M _r =	J
Which compound is one of the products of this hydrolysis? A C ₃ H ₇ ONa B C ₃ H ₅ O ₂ Na C C ₄ H ₉ ONa C C ₄ H ₇ O ₂ Na				
A C_3H_7ONa B $C_3H_5O_2Na$ C_4H_9ONa $C_4H_7O_2Na$	0. B	Butyl propanoate is hydrolysed by aqueous sodium hydroxide.		
$C_3H_5O_2Na$ C_4H_9ONa $C_4H_7O_2Na$	Vhic	h compound is one of the products of this hydrolysis?		
C C ₄ H ₉ ONa C ₄ H ₇ O ₂ Na	4	C ₃ H ₇ ONa		
C ₄ H ₇ O ₂ Na	3	$C_3H_5O_2Na$		
	3	C ₄ H ₉ ONa		
Your answer [1])	$C_4H_7O_2Na$		
Your answer [1]				
	our	answer	[1]	

END OF QUESTION PAPER